-Ketoglutarate Dehydrogenase and Glutamate Dehydrogenase Work in Tandem To Modulate the Antioxidant -Ketoglutarate during Oxidative Stress in Pseudomonas fluorescens

نویسندگان

  • Ryan J. Mailloux
  • Ranji Singh
  • Guy Brewer
  • Christopher Auger
  • Joseph Lemire
  • Vasu D. Appanna
چکیده

-Ketoglutarate (KG) is a crucial metabolite in all living organisms, as it participates in a variety of biochemical processes. We have previously shown that this keto acid is an antioxidant and plays a key role in the detoxification of reactive oxygen species (ROS). In an effort to further confirm this intriguing phenomenon, Pseudomonas fluorescens was exposed to menadione-containing media, with various amino acids as the sources of nitrogen. Here, we demonstrate that KG dehydrogenase (KGDH) and NAD-dependent glutamate dehydrogenase (GDH) work in tandem to modulate KG homeostasis. While KGDH was sharply decreased in cells challenged with menadione, GDH was markedly increased in cultures containing arginine (Arg), glutamate (Glu), and proline (Pro). When ammonium (NH4) was utilized as the nitrogen source, both KGDH and GDH levels were diminished. These enzymatic profiles were reversed when control cells were incubated in menadione media. C nuclear magnetic resonance and high-performance liquid chromatography studies revealed how KG was utilized to eliminate ROS with the concomitant formation of succinate. The accumulation of KG in the menadione-treated cells was dependent on the redox status of the lipoic acid residue in KGDH. Indeed, the treatment of cellular extracts from the menadione-exposed cells with dithiothreitol, a reducing agent, partially restored the activity of KGDH. Taken together, these data reveal that KG is pivotal to the antioxidative defense strategy of P. fluorescens and also point to the ROS-sensing role for KGDH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histidine is a source of the antioxidant, alpha-ketoglutarate, in Pseudomonas fluorescens challenged by oxidative stress.

The role of alpha-ketoglutarate (KG) in the detoxification of reactive oxygen species (ROS) has only recently begun to be appreciated. This ketoacid neutralizes ROS in an NADPH-independent manner with the concomitant formation of succinate and CO(2). To further probe this intriguing attribute of KG in living systems, we have evaluated the significance of histidine metabolism in the model organi...

متن کامل

Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens.

Oxalic acid plays a pivotal role in the adaptation of the soil microbe Pseudomonas fluorescens to aluminum (Al) stress. Its production via the oxidation of glyoxylate necessitates a major reconfiguration of the enzymatic reactions involved in the tricarboxylic acid (TCA) cycle. The demand for glyoxylate, the precursor of oxalic acid appears to enhance the activity of isocitrate lyase (ICL). The...

متن کامل

α-Ketoglutarate Accumulation Is Not Dependent on Isocitrate Dehydrogenase Activity during Tellurite Detoxification in Escherichia coli

Tellurite is toxic to most microorganisms because of its ability to generate oxidative stress. However, the way in which tellurite interferes with cellular processes is not fully understood to date. In this line, it was previously shown that tellurite-exposed cells displayed reduced activity of the α-ketoglutarate dehydrogenase complex (α-KGDH), which resulted in α-ketoglutarate (α-KG) accumula...

متن کامل

Production of Recombinant Proline Dehydrogenase Enzyme from Pseudomonas fluorescens pf-5 in E. coli System

Proline dehydrogenase (ProDH; 1.5.99.8) belongs to superfamily of amino acid dehydrogenase, which plays a significant role in the metabolic pathway from proline to glutamate. The goal of this research was gene cloning and characterization of ProDH enzyme from Pseudomonas fluorescens pf-5 strain. The gene encoding ProDH was isolated by means of PCR amplification and cloned in an IPTG inducible T...

متن کامل

The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist

The tricarboxylic acid (TCA) cycle is an essential metabolic network in all oxidative organisms and provides precursors for anabolic processes and reducing factors (NADH and FADH(2)) that drive the generation of energy. Here, we show that this metabolic network is also an integral part of the oxidative defence machinery in living organisms and alpha-ketoglutarate (KG) is a key participant in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009